在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B.
(1)求∠BAO的度数;
(2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点Q在AD上,连结PQ,过作射线PF⊥PQ交x轴于点F,作PG⊥x轴于点G.
求证:PF=PQ ;
(3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P为线段EB的中点,连接PD、PO,猜想线段PD、PO有怎样的关系?并说明理由.
有理数<0 、
>0 、
>0,且
.
(1)在数轴上将a、b、c三个数填在相应的括号中.
(2)化简:.
解方程:
(1);
(2)
(1)化简:2a-[a-2(a-b)]-b
(2)先化简,再求值:已知多项式A=32—6ab+b2,B=—2
2+3ab—5b2,当
=1,b=—1时,求A+2B的值.
【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出结论:___________________.
【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
已知:如图1,射线MN⊥AB,AM=1cm,MB=4cm.点C从M出发以2cm/s的 速度沿射线MN运动,设点 C的运动时间为t(s)
(1)当△ABC为等腰三角形时,求t的值;
(2)当△ABC为直角三角形时,求t的值;
(3)当t满足条件:__________时,△ABC为钝角三角形; 当_________时,△ABC为锐角三角形.