本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵
确定的压缩变换
与矩阵
确定的旋转变换
进行复合,得到复合变换
.
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆在复合变换
的作用下所得曲线
的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数),
、
分别为直线
与
轴、
轴的交点,线段
的中点为
.
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求点
的极坐标和直线
的极坐标方程.
(3)(本小题满分7分)选修4—5:不等式选讲
已知不等式的解集与关于
的不等式
的解集相等.
(Ⅰ)求实数,
的值;
(Ⅱ)求函数的最大值,以及取得最大值时
的值.
已知函数的部分图象如图所示,
是图象的最高点,
为图象与
轴的交点,
为坐标原点,若
(1)求函数的解析式,
(2)将函数的图象向右平移2个单位后得到函数
的图象,当
时,求函数
的值域.
选修4—5:不等式选讲
已知函数.
(Ⅰ)当时,解不等式
;
(Ⅱ)若的最小值为1,求a的值.
选修4—4:坐标系与参数方程
已知曲线的参数方程为
(
为参数),在同一平面直角坐标系中,将曲线
上的点按坐标变换
得到曲线
.(1)求曲线
的普通方程; (2)若点
在曲线
上,点
,当点
在曲线
上运动时,求
中点
的轨迹方程.
选修4-1:几何证明选讲
如图,是
的一条切线,切点为
,直线
,
,
都是
的割线,已知
.
(1)求证:;
(2)若,
.求
的值.
已知函数.
(1)若曲线在
处的切线为
,求
的值;
(2)设,
,证明:当
时,
的图象始终在
的图象的下方;
(3)当时,设
,(
为自然对数的底数),
表示
导函数,求证:对于曲线
上的不同两点
,
,
,存在唯一的
,使直线
的斜率等于
.