(本小题满分12分) 已知数列的前
项和为
,且
.数列
满足
(
),且
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
已知命题p:“”;命题q:“
”.若命题“
”是真命题,求实数a的取值范围.
已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
已知函数,请用定义证明
在
上为减函数.
如图,三棱柱的所有棱长都为
,且
平面
,
为
中点.
(Ⅰ)求证:面
;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面
的距离.
设椭圆的左焦点为
,直线
与
轴交于点
,过点
且倾斜角为30°的直线
交椭圆于
两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段
为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点
,以
为直径且过点
的所有圆中,求面积最小的圆的半径长.