(本小题满分8分)已知直线:
和点
(1,2),设过
点与
垂直的直线为
.
(1)求直线的方程;
(2)求直线与两坐标轴围成的三角形的面积.
设(1)求
的最大值及
的值;(2)求
的单调区间;(3)若
,求
的值.
从5名男生和4名女生选出4人去参加辩论比赛.
(1)求选出的4人中有1名女生的概率;
(2)设X为选出的4人中的女生人数,求X的分布列及数学期望.
(本小题满分14分)
已知函数其中
为参数,且
(I)当时,判断函数
是否有极值;
(II)要使函数的极小值大于零,求参数
的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数
在区间
内都是增函数,求实数
的取值范围。
(本小题满分14分)
已知数列满足
(I)证明:数列是等比数列;
(II)求数列的通项公式;
(III)若数列满足
证明
是等差数列
(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求点E到平面ACD的距离 .