(本小题满分12分)已知函数(1)若函数处有极值10,求b的值;(2)若对任意上单调递增,求b的取值范围。
已知函数对一切、都有:,并且当时,. (1)判定并证明函数在上的单调性; (2)若,求不等式的解集.
如图,四棱锥中,底面是矩形,底面,,点是侧棱的中点. (Ⅰ)证明:平面; (Ⅱ)若,求二面角的余弦值.
设,. (Ⅰ)化简集合; (Ⅱ)若,求实数的取值范围.
已知:关于的方程有两个不相等的负实根;:关于的不等式的解集为. 若为真,为假,求实数的取值范围.
设函数. (1)当时,求曲线在处的切线方程; (2)当时,求函数的单调区间; (3)在(2)的条件下,设函数,若对于,,使成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号