(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
如图1,,
,过动点A作
,垂足
在线段
上且异于点
,连接
,沿
将△
折起,使
(如图2所示).
(1)当的长为多少时,三棱锥
的体积最大;
(2)当三棱锥的体积最大时,设点
,
分别为棱
、
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在区域返券60元;停在
区域返券30元;停在
区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量
的分布列和数学期望.
在中,内角
、
、
的对边分别为
、
、
,且
(1)求A的大小;
(2)求的最大值.
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点
,度量点
的坐标
,如图.
(Ⅰ)拖动点,发现当
时,
,试求抛物线
的方程;
(Ⅱ)设抛物线的顶点为
,焦点为
,构造直线
交抛物线
于不同两点
、
,构造直线
、
分别交准线于
、
两点,构造直线
、
.经观察得:沿着抛物线
,无论怎样拖动点
,恒有
.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点
”改变为其它“定点
”,其余条件不变,发现“
与
不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“
”成立?如果可以,请写出相应的正确命题;否则,说明理由.
已知函数.
(Ⅰ)当时,求
的单调区间;
(Ⅱ)设函数在点
处的切线为
,直线
与
轴相交于点
.若点
的纵坐标恒小于1,求实数
的取值范围.