一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,
(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率。
右面的图形无限向内延续,最外面的正方形的边长等1。从外到内,第i个正方形与内切圆之间的深灰色图形面积记为Si(i="1," 2, …)。分别求S1,S2,Sk;
求深灰色图形的面积的总和。
如图,四边形ABCD为矩形,DA⊥平面ABE,
AE=EB=BC=2,EB⊥平面ACE于点F,且点F在CE上。
(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN//平面DAE。
已知圆(1)求过点
的圆C的切线方程;
(2)求在两坐标轴上截距之和为0,且截圆C所得弦长为2的直线方程。
已知集合(1)若
,求实数m的值;(2)若
,求实数m的取值范围.
设数列的通项公式为
。数列
定义如下:对于正整数m,
是使得不等式
成立的所有n中的最小值。(1)若
,求b3;(2)若
,求数列
的前2m项和公式;(3)是否存在p和q,使得
?如果存在,求p和q的取值范围;如果不存在,请说明理由。