游客
题文

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知,数列满足,数列满足;数列为公比大于的等比数列,且为方程的两个不相等的实根.
(Ⅰ)求数列和数列的通项公式;
(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后剩余的项按从小到大的顺序排成新数列,求数列的前项和.

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点.

(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面.

从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于cm和cm之间,将测量结果按如下方式分成八组:第一组[,),第二组[,),…,第八组[,],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人.
(Ⅰ)求第七组的频率;

(Ⅱ)估计该校的名男生的身高的中位数以及身高在cm以上(含cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件{},事件{},求

已知的内角的对边,满足,函数在区间上单调递增,在区间上单调递减.
(Ⅰ)证明:
(Ⅱ)若,证明为等边三角形.

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号