已知方程tan2x一tan x+1=0在x
[0,n
)( n
N*)内所有根的和记为an
(1)写出an的表达式;(不要求严格的证明)
(2)记Sn = a1 + a2 +…+ an求Sn;
(3)设bn =(kn一5) ,若对任何n
N* 都有an
bn,求实数k的取值范围.
已知函数f(x)=-sin(2x+
)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,]上的最大值和最小值.
设函数.
(1) 当时,求函数
的极值;
(2)若,证明:
在区间
内存在唯一的零点;
(3)在(2)的条件下,设是
在区间
内的零点,判断数列
的增减性.
如图,已知椭圆的右焦点为
,点
是椭圆上任意一点,圆
是以
为直径的圆.
(1)若圆过原点
,求圆
的方程;
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆
相切,请写出你的探究过程.
已知数列满足
(
).
(1)若数列是等差数列,求数列
的前
项和
;
(2)证明:数列不可能是等比数列.
如图,在长方体中,
.
(1)若点在对角线
上移动,求证:
⊥
;
(2)当为棱
中点时,求点
到平面
的距离。