(本小题满分14分)设数列的首项
R),且
,
(Ⅰ)若
;(Ⅱ)若
,证明:
;(Ⅲ)若
,求所有的正整数
,使得对于任意
,均有
成立.
已知(-
)n的展开式中,前三项系数的绝对值依次成等差数列.
(1)证明:展开式中没有常数项;
(2)求展开式中所有的有理项.
已知(a2+1)n展开式中各项系数之和等于(x2+
)5的展开式的常数项,而(a2+1)n的展开式的二项式系数最大的项等于54,求a的值.
已知(-
)n的展开式中,第五项与第三项的二项式系数之比为14∶3,求展开式中的常数项.
将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,求恰有2个房间无人选择且这2个房间不相邻的安排方式的种数.
有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1)选其中5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,甲不站在排头也不站在排尾;
(4)全体排成一排,女生必须站在一起;
(5)全体排成一排,男生互不相邻;
(6)全体排成一排,甲、乙两人中间恰好有3人.