某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交元(为常数,2≤a≤5 )的税收。设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与(e为自然对数的底数)成反比例。已知每件产品的日售价为40元时,日销售量为10件。(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值。
设函数的定义域是,其中常数.(注: (1)若,求的过原点的切线方程. (2)证明当时,对,恒有. (3)当时,求最大实数,使不等式对恒成立.
设,用表示当时的函数值中整数值的个数. (1)求的表达式. (2)设,求. (3)设,若,求的最小值.
设抛物线:的准线与轴交于点,焦点为;椭圆以和为焦点,离心率.设是与的一个交点. (1)求椭圆的方程. (2)直线过的右焦点,交于两点,且等于的周长,求的方程.
如图,正方体中,已知为棱上的动点. (1)求证:; (2)当为棱的中点时,求直线与平面所成角的正弦值.
已知的定义域为[]. (1)求的最小值. (2)中,,,边的长为6,求角大小及的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号