(本小题满分12分)设圆C:,此圆与抛物线
有四个不同的交点,若在
轴上方的两交点分别为
,
,坐标原点为
,
的面积为
。
(1)求实数的取值范围;
(2)求关于
的函数
的表达式及
的取值范围。
(本小题满分12分)已知,其中
是自然常数,
(1)讨论时,
的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分12分)如图,点A,B分别是椭圆的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:
且
.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值.
(本小题满分12分)已知A,B两点是椭圆与坐标轴正半轴的两个交点.
(1)设为参数,求椭圆的参数方程;
(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.
(本小题满分12分)已知直线的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
方向为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为
(1)将直线的参数方程化为普通方程,把曲线
的极坐标方程化为直角坐标方程;
(2)若直线与曲线
交于
两点,求
.
. (本小题满分12分)如图2所示,将一个长为8m,宽为5m的长方形剪去四个相同的边长为xm的正方形,然后再将所得图形围成一个无盖长方体,试求x为多少时,长方体的体积最大?最大体积为多少?