(本小题满分12分)如图,已知
平面
,
平面
,△
为等边三角形,
,
为
的中点.
(1) 求证:平面
;
(2) 求证:平面平面
;
(3) 求直线和平面
所成角的正弦值.
(本小题满分12分)定义在R上的奇函数有最小正周期4,且
时,
。
⑴求在
上的解析式;
⑵判断在
上的单调性,并给予证明;
⑶当为何值时,关于方程
在
上有实数解?
(本小题满分10分)△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),
=(cosA,-cosC),且
⊥
. (Ⅰ)求角A的大小;
(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角
的大小.
已知函数的图象过点
,且在
内
单调递减,在上单
调递增.
(1)求的解析式;
(2)若对于任意的,不等式
恒成立,试问
这样的是否存在.若存在,请求出
的范围,若不存在,说明理由
设函数是定义在R上的奇函数,对任意实数
有
成立.
(1)证明是周期函数,并指出其周期;
(2)若,求
的值;
(3)若,且
是偶函数,求实数
的值.