已知A={x|x2≥9},B={x|≤0},C={x||x-2|<4}.
(1)求A∩B及A∪C;
(2)若U=R,求A∩∁U(B∩C)
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在
岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求
的分布列及数学期望.
已知定圆的圆心为
,动圆
过点
,且和圆
相切,动圆的圆心
的轨迹记为
.
(Ⅰ)求曲线的方程;
(Ⅱ)若点为曲线
上一点,试探究直线:
与曲线
是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.
已知数列中,
,
,若数列
满足
.
(Ⅰ)证明:数列是等差数列,并写出
的通项公式;
(Ⅱ)求数列的通项公式及数列
中的最大项与最小项.
如图,多面体中,四边形
是边长为
的正方形,平面
垂直于平面
,且
,
,
.
(Ⅰ)求证:;
(Ⅱ)若分别为棱
和
的中点,求证:
∥平面
;
(Ⅲ)求多面体的体积.
设函数,其中
为实常数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)讨论在定义域
上的极值.