已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题.求c的取值范围.
已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数,,,∈R且+>0, +>0, +>0.试说明f()+f()+f()的值与0的关系.
比较aabb与abba(a,b为不相等的正数)的大小.
设f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.
适当增加不等式条件使下列命题成立: (1)若a>b,则ac≤bc; (2)若ac2>bc2,则a2>b2; (3)若a>b,则lg(a+1)>lg(b+1); (4)若a>b,c>d,则>; (5)若a>b,则<.
(1)比较x6+1与x4+x2的大小,其中x∈R; (2)设a∈R,且a≠0,试比较a与的大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号