设非常数数列{an}满足an+2=,n∈N*,其中常数α,β均为非零实数,且α+β≠0.
(1)证明:数列{an}为等差数列的充要条件是α+2β=0;
(2)已知α=1,β=, a1=1,a2=
,求证:数列{| an+1-an-1|} (n∈N*,n≥2)与数列{n+
} (n∈N*)中没有相同数值的项.
已知函数
(1)解不等式
(2)若.求证:
.
在直角坐标系中,曲线C的参数方程为(
为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点
,直线l的极坐标方程为
.
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与曲线C的两个交点为A、B,求的值.
已知为半圆
的直径,
,
为半圆上一点,过点
作半圆的切线
,过点
作
于
,交圆于点
,
.
(Ⅰ)求证:平分
;
(Ⅱ)求的长.
已知函数(其中
).
(Ⅰ)若为
的极值点,求
的值;
(Ⅱ)在(Ⅰ)的条件下,解不等式;
(Ⅲ)若函数在区间
上单调递增,求实数
的取值范围.
已知椭圆C的左、右焦点分别为,椭圆的离心率为
,且椭圆经过点
.
(1)求椭圆C的标准方程;
(2)线段是椭圆过点
的弦,且
,求
内切圆面积最大时实数
的值.