已知函数。
(1)讨论的奇偶性;
(2)判断在
上的单调性并用定义证明。
已知函数
(1)求函数的最小正周期和最大值;
(2)求函数单调递增区间
设分别是椭圆:
的左、右焦点,过
倾斜角为
的直线
与该椭圆相交于P,
两点,且
.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点满足
,求该椭圆的方程.
函数,过曲线
上的点P
的切线方程为
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
在数列中,已知
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足
,求
的前n项和
.
如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.