如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成直二面角,如图二,在二面角
中.
(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD成的角的正弦值。
(本小题满分12分)如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.
(1)求证:AD^BC;
(2)求二面角B-AC-D的大小;
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
(本小题满分12分) 已知定义在正实数集上的函数,
,其中
.设两曲线
,
有公共点,且在该点处的切线相同
(I)用表示
,并求
的最大值;
(II)求证:(
)
(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.
求:(I)打满3局比赛还未停止的概率;
(II)比赛停止时已打局数的分别列与期望E
.
(本小题满分10分) 已知的面积为
,且满足
,设
和
的夹角为
(I)求的取值范围;
(II)求函数的最大值与最小值
(本小题满分12分)已知数列{}满足
=
,
是{
}的前
项的和,
.(1)求
;(2)证明: