某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
|
甲班 (A方式) |
乙班 (B方式) |
总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
附:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
k |
1.323 |
2.072 |
2. 706 |
3. 841 |
5. 024 |
(本小题共12分)已知数列的前n项和
,其中
是首项为1,公差为2的等差数列,
(1)求数列的通项公式;
(2)若,求数列
的前n项和
(本小题共12分)直四棱柱中,底面是边长为
的正方形,侧棱长为4。
(1)求证:平面平面
;
(2)求点到平面
的距离d;
(3)求三棱锥的体积V。
(本小题共12分)如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点,求异面直线OC与MN所成角的余弦值。
已知数列是首项为1,公差为2的等差数列,
是首项为1,公比为3的等比数列,
(1)求数列、
的通项公式 ;(2)求数列
的前n项和
。
如图,四棱锥中,底面是边长为2的正方形,顶点在底面的射影是底面的中心,侧棱长为2, G是PB的中点。
①证明:PD// 面AGC;
②求AG和平面PBD所成的角的正切值。
![]() |