某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顾客数(人) |
![]() |
30 |
25 |
![]() |
10 |
结算时间(分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定的值,并求顾客一次购物的结算时间
的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)
(如图1)在平面四边形中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
已知函数(
均为正常数),设函数
在
处有极值.
(1)若对任意的,不等式
总成立,求实数
的取值范围;
(2)若函数在区间
上单调递增,求实数
的取值范围.
已知数列为等差数列,数列
为等比数列,若
,且
.
(1)求数列,
的通项公式;
(2)是否存在,使得
,若存在,求出所有满足条件的
;若不存在,请说明理由.
如图,在直三棱柱中,
,点
分别为
和
的中点.
(1)证明:平面
;
(2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:(
).