从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图如下.观察图形,回答下列问题:
(1)49.5——69.5这一组的频率和频数分别为多少?
(2)估计这次环保知识竞赛成绩的中位数及平均成绩.(精确到小数点后一位)
设函数是定义域为
的奇函数.
(1)求的值;
(2)若,求使不等式
对一切
恒成立的实数
的取值范围;
(3)若函数的图象过点
,是否存在正数
,且
使函数
在
上的最大值为
,若存在,求出
的值,若不存在,请说明理由.
设为实数,函数
,
(1)讨论的奇偶性;
(2)当时,求
的最大值.
设
(1)试判断函数零点的个数;
(2)若满足,求m的值;
(3)若m=1时, 上存在
使
成立,求
的取值范围.
某机械生产厂家每生产产品(百台),其总成本为
(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入
(万元)满足
,假定生产的产品都能卖掉,请完成下列问题:
(1)写出利润函数的解析式;
(2)工厂生产多少台产品时,可使盈利最多?