已知关于x的方程a2x2+(2a-1)x+1=0有两个实数根x1,x2.(1)当a为何值时,x1≠x2;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.
解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<.
∴当a<时,方程有两个不相等的实数根.
(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-=0①,
解得a=,经检验,a=
是方程①的根.
∴当a=时,方程的两个实数根x1与x2互为相反数.
上述解答过程是否有错误?如果有,请指出错误之处,并解答.
化简:.
解方程组:
如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求直线AB的解析式;
(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
如图1,已知抛物线
经过
、
两点.
(1)求抛物线的解析式;
(2)将直线
向下平移
个单位长度后,得到的直线与抛物线只有一个公共点
,求
的值及点
的坐标;
(3)如图2,若点
在抛物线上,且
,则在(2)的条件下,求出所有满足
的点
坐标(点
、
、
分别与点
、
、
对应).
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号 |
A |
B |
成本(万元/台) |
200 |
240 |
售价(万元/台) |
250 |
300 |
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)