一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。
(1)根据题意,完成下表:
车站序号 |
在第x车站启程时邮政车厢邮包总数 |
1 |
n-1 |
2 |
(n-1)-1+(n-2)=2(n-2) |
3 |
2(n-2)-2+(n-3)=3(n-3) |
4 |
|
5 |
|
… |
…… |
n |
|
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、
n表示)。
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
(本小题10分)已知抛物线.
(1)求它的对称轴与轴交点
的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴的交点为
,
,与
轴的交点为
,若
=90°,求此时抛物线的解析式;
(3)若点(
,
)在抛物线上,则称点
为抛物线的不动点.将抛物线
进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线
上,请说明理由.
(本小题10分)
如图①,将两个完全相同的三角形纸片和
重合放置,其中
90°,
30°,
.
(1)操作发现
如图②,固定△,将△
绕点
旋转,当点
恰好落在
边上时,m]
①=°,旋转角α=°(0<α<90),线段
与
的位置关系是;
②设△的面积为
,△
的面积为
,则
与
的数量关系是;
(2)猜想论证
当△绕点
旋转到图③所示的位置时,小明猜想(Ⅰ)中
与
的数量关系仍然成立,并尝试分别作出了△
和△
中
,
边上的高
,
,请你证明小明的猜想;
(3)拓展探究
如图④,60°,
平分
,
,
∥
交
于点
.若在射线
上存在点
,使
,请直接写出相应的
的长.
(本小题10分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.
(本小题10分)如图,两座建筑物的水平距离为30m,从
点测得
点的俯角
为35°,测得
点的俯角
为43°,求这两座建筑物的高度(结果保留小数点后1 位,参考数据
,
,
,
,
,
).
(本小题10分)已知AB,BC,CD分别与⊙相切于E,F,G三点,且AB∥CD,连接OB,OC.
(1)如图①,求∠BOC的度数;
(2)如图②,延长CO交⊙O于点M,过点M做MN∥OB交CD于点N,当OB=6,OC=8时,求⊙的半径及MN的长.