已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB,BC,AC的中点,连接DE,DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)。
(1)当点P运动到点F时,CQ= cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.
在“老年节”前夕,某公司工会组织323名退休职工到浙江杭州旅游,旅游前,工会确定每车保证有一名随团医生,并为此次旅游请了8名医生,现打算同时租甲、乙两种客车,其中甲种客车每辆载客50人,乙种客车每辆载客20人。
(1)请帮助工会设计租车方案。
(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,工会按哪种方案租车最省钱?此时租金是多少?
(3)旅游前,一名医生由于有特殊情况,工会只能安排7名医生随团,为保证所租的每辆车安排有一名医生,租车方案调整为:同时租80座、50座和20座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问工会的租车方案如何安排?
郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:
种植种类 |
成本(万元/亩) |
销售额(万元/亩) |
康乃馨 |
2.4 |
3 |
玫瑰花 |
2 |
2.5 |
(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)
(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?
(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?
某学校为了绿化校园,决定从某苗圃购进甲、乙、丙三种树苗共80株,其中甲种树苗株树是乙种树苗株树的2倍,购买三种树苗的总金额不超过1320元,已知乙种树苗的单价是16元/株,乙种树苗的单价是甲种树苗的单价的,购买丙种树苗12株的金额等于购买甲种树苗20株的金额。
(1)甲、丙两种树苗的单价分别是多少元?
(2)若要求甲种树苗的株树不超过丙种树苗的株树,请你帮助设计共有哪些购买方案?
阅读理解: 对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果,则<x>=n。
如:<0>=<0.49>=0,<0.64>=<1.393>=1,<3>=3,<2.5>=<3.12>=3,…
试解决下列问题:
(1)填空:如果<3x-2>=4,则实数x的取值范围为 ;
(2)当,m为非负整数时,求证:
;
(3)求满足的所有非负实数x的值;