某医药研究所开发一种新药,在实验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量(微克)与时间
(小时)之间满足
,
其对应曲线(如图所示)过点.
(1)试求药量峰值(的最大值)与达峰时间(
取最大值时对应的
值);
(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效,那么成人按规定剂量服用该药一次后能维持多长的有效时间?(精确到0.01小时)
如图,已知三棱锥,
,
分别为
的中点,且
为正三角形.
(Ⅰ)求证:平面
;
(Ⅱ)若,
,求点
到平面
的距离.
2012年伦敦奥运会前夕,在海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行了7轮比赛,得分的情况如茎叶图所示(单位:分).
甲 |
乙 |
|
8 |
7 |
9 |
5 4 5 4 1 |
8 |
4 4 6 7 4 |
1 |
9 |
1 |
(Ⅰ)分别求甲、乙两名运动员比赛成绩的平均分与方差;
(Ⅱ)若从甲运动员的7轮比赛的得分中任选3个不低于80分且不高于90分的得分,求这3个得分与其平均分的差的绝对值都不超过2的概率.
已知公差不为零的等差数列中,
,且
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令(
),求数列
的前
项和
.
已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=
(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。
如图所示,流程图给出了无穷等差整数列,
时,输出的
时,输出的
(其中d为公差)
(I)求数列的通项公式;
(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。