某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间 |
[25,30) |
[30,35) |
[35,40) |
[40,45) |
[45,50] |
人数 |
50 |
50 |
![]() |
150 |
![]() |
(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(III)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多
,记P点的轨迹为曲线C
(I)求曲线C的方程;
(II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若
为正三角形,求M点的坐标与直线
的方程。
设函数,已知
和
为
的极值点。
(I)求a和b的值;
(II)设,试证
恒成立。
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为 ,求
的分布列和数学期望;
(II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。
设函数
(I)对的图像作如下变换:先将
的图像向右平移
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数
的图像,求
的解析式;
(II)已知,且
,求
的值。