游客
题文

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.
(1)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(2)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.

已知数列的前项和为,首项,且对于任意都有
(1)求的通项公式;
(2)设,且数列的前项之和为,求证:

中,角所对的边分别为,且
(1)求角C;
(2)若的面积,求及边的值.

已知函数
(1)当x>0时,证明
(2)当x>-1且x≠0时,不等式恒成立,求实数k的值.

已知椭圆)的左、右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点Q,使得以为直径的圆恒过直线的交点,若存在,求出点Q的坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号