甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.
(1)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(2)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.
数列{}的前n项和记为
,a1=t,
=2
+1(n∈N+).
(Ⅰ)当t为何值时,数列{}是等比数列;
(Ⅱ)在(Ⅰ)的条件下,若等差数列{}的前n项和
有最大值,且
=15,又
a1+b1,a2+b2,a3+b3成等比数列,求.
已知△ABC的三个内角A、B、C所对的边分别为a,b, c,向量m=(1,1-sinA),n=(cosA,1),且m⊥n.
(Ⅰ)求角A;
(Ⅱ)若b+c=a,求sin(B+
)的值.
已知集合U={x|>-2且x∈Z},集合A={x|ax-1=0},集合B={x|
-(a+3)x+2a+2=0),若CUA=B,求a的值.
已知中心在原点,焦点在轴上的椭圆,离心率
,且经过抛物线
的焦点.
(1)求椭圆的标准方程;
(2)若过点的直线
(斜率不等于零)与椭圆交于不同的两点
(
在
之间),与
面积之比为
,求
的取值范围.
已知函数的图象为曲线C。
(1)若曲线C上存在点P,使曲线C在P点处的切线与轴平行,求
的关系;
(2)若函数时取得极值,求此时
的值;
(3)在满足(2)的条件下,的取值范围。