已知函数(
为实数).
(Ⅰ)当时,求函数
的图象在点
处的切线方程;
(Ⅱ)设函数(其中
为常数),若函数
在区间
上不存在极值,且存在
满足
,求
的取值范围;
(Ⅲ)已知,求证:
.
如图,四棱柱中,
.
为平行四边形,
,
,
分别是
与
的中点.
(1)求证:;
(2)求二面角的平面角的余弦值.
某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).
(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为,求
的分布列及数学期望
.
(13分)已知函数的图象在点
处的切线垂直于
轴.
(1)求实数的值;
(2)求的极值.
已知.
(1)求不等式的解集A;
(2)若不等式对任何
恒成立,求
的取值范围.
已知数列的前
项和为
,且
.
(1)求的通项公式;
(2)设恰有5个元素,求实数
的取值范围.