游客
题文

(本小题满分13分)如图,四面体ABCD中,O是BD的中点,
ABD和BCD均为等边三角形,AB=2,AC=
(1)求证:AO⊥平面BCD;(2)求二面角A—BC—D的大小;
(3)求O点到平面ACD的距离。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

对某校高一年级学生参加社区服务次数进行统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据数据作出了频数的统计如下:

分组
频数
频率
[10,15)
9
0.45
[15,20)
5
n
[20,25)
m
r
[25,30)
2
0.1
合计
M
1

(Ⅰ)求出表中M,r,m,n的值;
(Ⅱ)在所取样本中,从参加社区服务次数不少于20次的学生中任选2人,求至少有1人参加社区服务次数在区间[25,30)内的概率.

中,分别为角的对边,的面积满足.
(Ⅰ)求角A的值;
(Ⅱ)若,设角B的大小为x,用x表示c并求的取值范围.

设数列的各项均为正数,其前n项的和为,对于任意正整数m,n, 恒成立.
(Ⅰ)若=1,求及数列的通项公式;
(Ⅱ)若,求证:数列是等比数列.

设函数
(Ⅰ)求证:函数上单调递增;
(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号