在三棱柱中,已知
,在
在底面
的投影是线段
的中点
。
(1)求点C到平面的距离;
(2)求二面角的余弦值;
(3)若M,N分别为直线上动点,求MN的最小值。
(本题共12分)
一盒中放有的黑球和白球,其中黑球4个,白球5个.
(Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率;
(Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
(Ⅲ)若取到白球则停止摸球,求取到第三次时停止摸球的概率
设.
(Ⅰ)判断函数在
的单调性并证明;
(Ⅱ)求在区间
上的最小值。
已知函数与函数
.
(I)若的图象在点
处有公共的切线,求实数
的值;
(II)设,求函数
的极值.
已知函数在
与
时都取得极值
(1)求的值与函数
的单调区间
(2)若对,不等式
恒成立,求
的取值范围。
(本小题共13分)
已知椭圆和直线L:
="1," 椭圆的离心率
,直线L与坐标原点的距离为
。
(1)求椭圆的方程;
(2)已知定点,若直线
与椭圆相交于C、D两点,试判断是否存在
值,使以CD为直径的圆过定点E?若存在求出这个
值,若不存在说明理由。