如图1,已知AC∥BD,点P是直线AC、BD间的一点,连结AB、AP、BP,过点P作直线MN∥AC.
(1)填空:MN与BD的位置关系是 ;
(2)试说明∠APB=∠PBD +∠PAC;
(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?
如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.
列方程解应用题:
随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.
如图,正方形中,点F在边BC上,E在边BA的延长线上.
(1)若按顺时针方向旋转后恰好与
重合.则旋转中心是点;最少旋转了度;
(2)在(1)的条件下,若,求四边形
的面积.
如图,在中,AB是⊙O的直径,⊙O与AC交于点D,
,求
的度数;
某射击运动员在相同条件下的射击160次,其成绩记录如下:
射击次数 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
射中9环以上的次数 |
15 |
33 |
63 |
79 |
97 |
111 |
130 |
|
射中9环以上的频率 |
0.75 |
0.83 |
0.80 |
0.79 |
0.79 |
0.79 |
0.81 |
(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);
(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.
(1)如图一,图二,等边三角形MNP的边长为1,线段AB的长为4,点M与A重合,点N在线段AB上.△MNP沿线段AB按的方向滚动, 直至△MNP中有一个点与点B重合为止,则点P经过的路程为;
(2)如图三,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上,点P在正方形内部,正方形MNPQ沿正方形ABCD的边按的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止,则点P经过的最短路程为.
(注:以△MNP为例,△MNP沿线段AB按的方向滚动指的是先以顶点N为中心顺时针旋转,当顶点P落在线段AB上时,再以顶点P为中心顺时针旋转,如此继续.多边形沿直线滚动与此类似.)