(文科)长方体中,
,
,
是底面对角线的交点.
(Ⅰ) 求证:平面
;
(Ⅱ) 求证:平面
;
(Ⅲ) 求三棱锥的体积。
已知函数,
为正整数.
(Ⅰ)求和
的值;
(Ⅱ)数列的通项公式为
(
),求数列
的前
项和
;
(Ⅲ) (4分)设数列满足:
,
,设
,若(Ⅱ)中的
满足:对任意不小于3的正整数n,
恒成立,试求m的最大值.
已知数列{an}的前n项和为
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,数列{Cn}的前项和为Tn,求证:Tn<4.
在社会实践中,小明观察一棵桃树。他在点A处发现桃树顶端点C的仰角大小为,往正前方走4米后,在点B处发现桃树顶端点C的仰角大小为
.
(I) 求BC的长;
(II) 若小明身高为1.70米,求这棵桃树顶端点C离地面的高度(精确到0.01米,其中).
设等比数列的前
项和为
,
,求数列
的通项公式.