游客
题文

某数学兴趣小组在上课时,老师为他们设计了一个抓奖游戏,并设置了两种抓奖方案,游戏规则是:在一个不透明的箱子内放了3颗表面写有-2,-1,1且大小完全相同的小球,每个游戏者必须抓两次小球;分别以先后抓到的两个小球所标的数字作为一个点的横、纵坐标,如果这个点在第三象限则中奖.有两种方案如下:
方案一:先抓出一颗小球,放回去摇匀后再抓出一颗小球;
方法二:先抓出一颗小球且不放回,然后再抓出一颗小球;
(1)请你计算(列表或画树形图)方案一的中奖率;
(2)请直接写出方案二的中奖概率,如果你在做这个游戏,你会选择方案几?说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

计算: 2 sin 60 ° + ( - 1 3 ) - 2 + ( π - 2020 ) 0 + | 2 - 3 |

如图1,直线 y = x - 4 x 轴交于点 B ,与 y 轴交于点 A ,抛物线 y = - 1 2 x 2 + bx + c 经过点 B 和点 C ( 0 , 4 ) ΔABO 沿射线 AB 方向以每秒 2 个单位长度的速度平移,平移后的三角形记为 ΔDEF (点 A B O 的对应点分别为点 D E F ) ,平移时间为 t ( 0 < t < 4 ) 秒,射线 DF x 轴于点 G ,交抛物线于点 M ,连接 ME

(1)求抛物线的解析式;

(2)当 tan EMF = 4 3 时,请直接写出 t 的值;

(3)如图2,点 N 在抛物线上,点 N 的横坐标是点 M 的横坐标的 1 2 ,连接 OM NF OM NF 相交于点 P ,当 NP = FP 时,求 t 的值.

如图,四边形 ABCD 是正方形,点 F 是射线 AD 上的动点,连接 CF ,以 CF 为对角线作正方形 CGFE ( C G F E 按逆时针排列),连接 BE DG

(1)当点 F 在线段 AD 上时.

①求证: BE = DG

②求证: CD - FD = 2 BE

(2)设正方形 ABCD 的面积为 S 1 ,正方形 CGFE 的面积为 S 2 ,以 C G D F 为顶点的四边形的面积为 S 3 ,当 S 2 S 1 = 13 25 时,请直接写出 S 3 S 1 的值.

某服装厂生产 A 品种服装,每件成本为71元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元, y x 之间满足如图所示的函数关系,其中批发件数 x 为10的正整数倍.

(1)当 100 x 300 时, y x 的函数关系式为    

(2)某零售商到此服装厂一次性批发 A 品牌服装200件,需要支付多少元?

(3)零售商到此服装厂一次性批发 A 品牌服装 x ( 100 x 400 ) 件,服装厂的利润为 w 元,问: x 为何值时, w 最大?最大值是多少?

如图, BC O 的直径, AD O 的弦, AD BC 于点 E ,连接 AB CD ,过点 E EF AB ,垂足为 F AEF = D

(1)求证: AD BC

(2)点 G BC 的延长线上,连接 AG DAG = 2 D

①求证: AG O 相切;

②当 AF BF = 2 5 CE = 4 时,直接写出 CG 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号