某服装厂生产 品种服装,每件成本为71元,零售商到此服装厂一次性批发 品牌服装 件时,批发单价为 元, 与 之间满足如图所示的函数关系,其中批发件数 为10的正整数倍.
(1)当 时, 与 的函数关系式为 .
(2)某零售商到此服装厂一次性批发 品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发 品牌服装 件,服装厂的利润为 元,问: 为何值时, 最大?最大值是多少?
已知关于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一个根,求k值和方程的另一根;
(2)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.
如图所示,是⊙O的一条弦,
,垂足为
,交⊙O于点
,点
在⊙O上.
(1)若,求
的度数;
(2)若,
,求
的长.
解下列方程
(1)x2-5x-6=0
(2)(x+1)(x-1)=2x.
如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.
(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π);
(3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).
随着人民生活水平的不断提高,大丰区家庭轿车的拥有量逐年增加.据统计,怡景小区2012年底拥有家庭轿车144辆,2014年底家庭轿车的拥有量达到196辆.2014年底小区拥有室内车位和露天车位共180个.假设该小区2012年底到2016年底家庭轿车拥有量的年平均增长率都相同.
(1)估计该小区到2015年底家庭轿车将达到多少辆?(结果四舍五入取整数)
(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍.在投资款恰好用完的情况下求该小区可建两种车位各多少个?试写出所有可能的方案.并判断有没有方案能够满足2016年底小区所有轿车同时停车的需求?