游客
题文

在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=
(1) 如图1,当点E在射线OB上时,求关于的函数解析式,并写出自变量的取值范围;

(2) 如图2,当点F在⊙O上时,求线段DF的长;
   
(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

(本题共两小题,每小题6分,满分12分)
(1)计算:
(2)解不等式组,并把解集在数轴上表示出来.

(本小题满分12分)如图1,已知抛物线经过坐标原点轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

(本小题满分12分)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点Bl的垂线BD,垂足为DBD与⊙O交于点 E
(1) 求∠AEC的度数;
(2)求证:四边形OBEC是菱形.

(本小题满分10分)袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.
(1)从袋中摸出一个小球,求小球上数字小于3的概率;
(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)

(本小题满分10分)如图,在平面直角坐标系内,为原点,点的坐标为经过两点作半径为轴的负半轴于点

(1)求点的坐标;
(2)过点作的切线交轴于点求直线的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号