已知正项数列的前项和为,且 .(1)求的值及数列的通项公式; (2)求证:;(3)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
设函数的定义域为, 的定义域为. (1)求; (2)若,求实数的取值范围。
已知数列的前n项和,数列的前n项和,, (1)求,的通项公式; (2)设,是否存在正整数,使得对恒成立?若存在,求出的值;若不存在,说明理由。
已知函数 (1)求函数的单调区间与极值点; (2)若,方程有三个不同的根,求的取值范围。
设二次方程,有两根和,且满足, (1)试用表示; (2)证明是等比数列; (3)设,,为的前n项和,证明,()。
已知:对,函数总有意义;函数在上是增函数;若命题“或”为真,求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号