在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。
已知向量,
,
.
(Ⅰ)求函数的最小正周期及对称轴方程;
(Ⅱ)在△ABC中,角A,B,C的对边分别是若
,b=1,△ABC的面积为
,求
的值.
已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.
已知函数在
时有最大值2,求a的值.
函数的最大值为3,其图像相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)设,求
的值.
已知数列中,
前
和
(1)求证:数列是等差数列
(2)求数列的通项公式
(3)设数列的前
项和为
,是否存在实数
,使得
对一切正整数
都成立?若存在,求
的最小值,若不存在,试说明理由。