如图,菱形ABCD的对角线 AC 与 BD 交于点 O , AB = 5 , AC = 6 ,点 E , F 分别在 AD , CD 上, AE = CF = 5 4 , EF 交 BD 于点 H .将 △ DEF 沿 EF 折到 △ D ' EF 的位置, O D ' = 10 .
(1)证明: D ' H ⊥ 平面 ABCD ;
(2)求二面角 B - D ' A - C 的正弦值.
抛物线的焦点为,过点的直线交抛物线于,两点. ①若,求直线的斜率; ②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.
经过作直线交曲线:(为参数)于、两点,若成等比数列,求直线的方程.
如图,四棱锥中,底面为平行四边形,,,⊥底面.①证明:平面平面; ②若二面角为,求与平面所成角的正弦值.
从集合的所有非空子集中,等可能地取出一个. ①记性质:集合中的所有元素之和为10,求所取出的非空子集满足性质的概率; ②记所取出的非空子集的元素个数为,求的分布列和数学期望.
在中,角的对边分别为,且. ①求角的大小; ②求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号