三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,有多少种不同的排法?
(2)如果女生必须全分开,有多少种不同的排法?
(3)如果两端都不能排女生,有多少种不同的排法?
(4)如果两端不能都排女生,有多少种不同的排法?
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:
(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;
(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
在如右图的几何体中,四边形为正方形,四边形
为等腰梯形,
∥
,
,
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.
在无穷数列中,
,对于任意
,都有
,
. 设
, 记使得
成立的
的最大值为
.
(1)设数列为1,3,5,7,
,写出
,
,
的值;
(2)若为等差数列,求出所有可能的数列
;
(3)设,
,求
的值.(用
表示)
设是椭圆
上不关于坐标轴对称的两个点,直线
交
轴于点
(与点
不重合),O为坐标原点.
(1)如果点是椭圆
的右焦点,线段
的中点在y轴上,求直线AB的方程;
(2)设为
轴上一点,且
,直线
与椭圆
的另外一个交点为C,证明:点
与点
关于
轴对称.