已知向量,
,且
(1)求的取值范围;
(2)求函数的最小值,并求此时x的值
(本小题满分12分)如图,在四棱锥中,
平面
,底面
是菱形,
,
,
为
与
的交点,
为棱
上一点.
(Ⅰ)证明:平面⊥平面
;
(Ⅱ)若平面
,求三棱锥
的体积.
(本小题满分12分)设为的内角
、
、
所对的边分别为
、
、
,且
.
(1)求角的大小;
(2)若,求
的最值.
设曲线在点
处的切线斜率为
,且
.对一切实数
,不等式
恒成立(
≠0).
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:>
.
哈六中体育节进行定点投篮游戏,已知参加游戏的甲、乙两人,他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
选修4—4:不等式选讲
已知,求证:
.