游客
题文

在△ABC中,a, b, c分别为内角A, B, C的对边,且满足2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;       (Ⅱ)求的最大值.

科目 数学   题型 解答题   难度 较易
知识点: 西姆松定理
登录免费查看答案和解析
相关试题

正方体ABCD-A1B1C1D1中,P为面A1B1C1D1的中心,求证:PAPB1.

如图所示,点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,EF分别是ACAD的中点.求DCEF这四点的坐标.

若实数x,y满足x2+y2+8x-6y+16=0,求x+y的最小值.

求过点(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.

已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线Cx轴相切,求k的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号