(文科)已知椭圆的中心在坐标原点,两个顶点在直线x+2y﹣4=0上,F1是椭圆的左焦点.
(1)求椭圆的标准方程;
(2)设点P是椭圆上的一个动点,求线段PF1的中点M的轨迹方程;
(3)若直线l:y=x+m与椭圆交于点A,B两点,求△ABO面积S的最大值及此时直线l的方程.
(理科)在平面直角坐标系中,已知点
,
,
为动点,且直线
与直线
的斜率之积为
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)设过点的直线
与曲线
相交于不同的两点
,
.若点
在
轴上,且
,求点
的纵坐标的取值范围.
(文科)已知椭圆的一个焦点为
,且离心率为
.(Ⅰ)求椭圆方程;(Ⅱ)过点
且斜率为
的直线与椭圆交于
两点,点
关于
轴的对称点为
,求△
面积的最大值.
(理科)已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交
于点.设弦
的中点为
,试求
的取值范围.
(本小题满分14分)已知函数,
(
为常数,
是自然对数的底数),
为
的导函数,且
,
(1)求的值;
(2)对任意证明:
;
(3)若对所有的≥0,都有
≥ax成立,求实数a的取值范围.