游客
题文

设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业。分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100)。而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元。
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知⊙和点.

(Ⅰ)过点向⊙引切线,求直线的方程;
(Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程;
(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().
(1)若,求
(2)试写出关于的关系式,并求的取值范围;
(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

已知函数的最大值为正实数,集合,集合
(1)求
(2)定义的差集:
均为整数,且取自的概率,取自的概率,写出的二组值,使
(3)若函数中,是(2)中较大的一组,试写出在区间[,n]上的最大值函数的表达式。

已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成以
Bn为顶点的等腰三角形。

⑴求{yn}的通项公式,且证明{yn}是等差数列;
⑵试判断xn+2-xn是否为同一常数(不必证明),并求出数列{xn}的通项公式;
⑶在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此时a值;
若不存在, 请说明理由。

已知之间满足
(1)方程表示的曲线经过一点,求b的值
(2)动点(x,y)在曲线(b>0)上变化,求x2+2y的最大值;
(3)由能否确定一个函数关系式,如能,求解析式;如不能,再加什么条件就可使之间建立函数关系,并求出解析式。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号