设,且
.
(1)求和
; (2)求
在
方向上的投影; (3)求
和
,使
.
某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料3千克,B原料1千克;生产乙产品1桶需耗A原料1千克,B原料3千克.每生产一桶甲产品的利润400元,每生产一桶乙产品的利润300元.公司在生产这两种产品的计划中,每天消耗A、B原料都不超过12千克,通过合理安排生产计划,公司每天可获得的最大利润是(单位:元)
A.1600 B.2100 C.2800 D.4800
(本小题满分14分)
已知抛物线上一点
到其焦点F的距离为4;椭圆
的离心率
,且过抛物线的焦点F.
(I)求抛物线和椭圆
的标准方程;
(II)过点F的直线交抛物线
于A、B两不同点,交
轴于点N,已知
,求证:
为定值.
(III)直线交椭圆
于P,Q两不同点,P,Q在x轴的射影分别为
,
,
,若点S满足:
,证明:点S在椭圆
上.
(本小题满分13分)
已知处的切线为
(I)求的值;
(II)若的极值;
(III)设,是否存在实数
(
,为自然常数)时,函数
的最小值为3.
(本小题满分12分)
已知是等差数列
的前n项和,数列
是等比数列,
恰为
的等比中项,圆
,直线
,对任意
,直线
都与圆C相切.
(I)求数列的通项公式;
(II)若对任意的前n项和
的值.
(本小题满分12分)
如图,ABCD为梯形,平面ABCD,AB//CD,
,E为BC中点
(I)求证:平面平面PDE;
(II)线段PC上是否存在一点F,使PA//平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.