游客
题文

如图,抛物线与y轴突于A点,过点A的直线y=kx+l与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)

(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点产作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并求出线段MN的最大值;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(本题8分)如图,已知等边三角形OAB的边长为2,求三个顶点的坐标

(本题8分)在一个不透明的口袋里装有若干个质地相同的红球, 为了估计袋中红球的数量,某学习小组做了摸球实验, 他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色, 再把它放回袋中, 多次重复摸球. 下表是多次活动汇总后统计的数据:

摸球的次数S
150
200
500
900
1000
1200
摸到白球的频数n
51
64
156
275
303
361
摸到白球的频率
0.34
0.32
0.312
0.306
0.303
0.301


(1)请估计:当摸球次数S很大时, 摸到白球的频率将会接近
假如你去摸一次,你摸到红球的概率是;(精确到0.1).
(2)试估算口袋中红球有多少只?

(本题6分)为了保证中小学生每天锻炼1小时,某校开展了形式多样的体育活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图1和图2.

(1)请根据所给信息在图1中将表示“乒乓球”项目的图形补充完整;
(2)扇形统计图2中表示”足球”项目扇形的圆心角度数为

(本题6分)一次函数的图象经过点A(−3,−2).
(1)求这个一次函数的关系式;
(2)判断点B(-5,3)是否在这个函数的图象上.

在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线, DE⊥AB于点E.

(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号