某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差x(℃) |
10 |
11 |
13 |
12 |
8 |
发芽y(颗) |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.
回归直线方程参考公式:,
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则
认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数。
(本小题满分12分)数列的前
项和为
,且
,数列
满足
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)设数列满足
,其前
项和为
,如果不等式M≥
对n∈N*恒成立,求M的最小值.
(本小题满分12分)已知∠ACB=45°,B、C为定点且BC=3,A为动点,作AD⊥BC,垂足D在线段BC上且异于点B,如图1。连接AB,沿将△
折起,使∠BDC=90°,如图2.
(Ⅰ)当A点在何处时,三棱锥A-BCD的体积最大;
(Ⅱ)当三棱锥A-BCD的体积最大时,分别取BC,AC的中点E、M,试在棱CD上确定一点N,使得EN⊥BM,并求此时EN与平面BMN所成角的大小.
(本小题满分12分)已知函数,其中ω是使得函数图象相邻两对称轴间的距离不超过
的最小正整数,若将
的图象先向左平移
个单位,再向下平移1个单位,所得的函数
为奇函数.
(Ⅰ)求的解析式,并求
的对称中心;
(Ⅱ)△ABC中,如果f()=2,b=4
,且asinA-bsinB=sinC(c-
b),求△ABC的面积.
(本小题满分12分)一次数学测验,某班50名的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五段:第一段,第二段
,……,第五段
.按上述分段方法得到的频率分布直方图如图所示.
(Ⅰ)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(Ⅱ)现将分数在[90,110)内同学分为第1组,在[110,120)内的分为第2组,在[120,140)内的分为第3组,然后从中随机抽取2人,用ξ表示这2人所在组数之差的绝对值,求ξ的分布列和期望.
(本小题满分14分)如图,、
为椭圆
的左、右焦点,
、
是椭圆的两个顶点,椭圆的离心率
,
.若
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
、
两点,
、
两点的“椭点”分别为
、
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在过左焦点的直线
,使得以
为直径的圆经过坐标原点?若存在,求出该直线方程,若不存在,是说明理由.