设,
(1)若在
处有极值,求
;(2)若
在
上为增函数,求
的取值范围.
设函数.
(1)求的值域;
(2)记△ABC的内角A,B,C的对边长分别为,
,
,若
,求
的值.
已知函数
(1)当时,求不等式
的解集;(2)若
的解集包含
,求
的取值范围.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos=2
.
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.
如图所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,
求△BCF外接圆的半径.
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,求实数
的取值范围;
(3)当且
时,试比较
的大小