如图,在平面直角坐标系中,
、
为
轴上两点,
、
为
一上两点,经过点
、
、
的抛物线的一部分
与经过点
、
的抛物线的一部分
组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点
的坐标为
,点
是抛物线
的顶点.
(1)求、
两点的坐标;
(2)“蛋线”在第四象限上是否存在一点,使得
的面积最大?若存在,求出
面积的最大值;若不存在,请说明理由;
(3)当为直角三角形时,求
的值.
某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为 轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
如图,已知 为 直径, 是 的切线,连接 交 于点 ,取 的中点 ,连接 交 于点 ,过点 作 于 .
(1)求证: ;
(2)若 , ,求 和 的长.
为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
(1)被随机抽取的学生共有多少名?
(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;
(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
“五 一”期间,小明到小陈家所在的美丽乡村游玩,在村头 处小明接到小陈发来的定位,发现小陈家 在自己的北偏东 方向,于是沿河边笔直的绿道 步行200米到达 处,这时定位显示小陈家 在自己的北偏东 方向,如图所示.根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头 处(精确到1米)(备用数据: ,
有一张边长为 厘米的正方形桌面,因为实际需要,需将正方形边长增加 厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式: ,
对于方案一,小明是这样验证的:
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三: