为了提高产品的年产量,某企业拟在2013年进行技术改革.经调查测算,产品当年的产量万件与投入技术改革费用
万元(
)满足
(
为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定收入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的
倍(生产成本包括固定投入和再投入两部分资金).
(Ⅰ)试确定的值,并将2013年该产品的利润
万元表示为技术改革费用
万元的函数(利润=销售金额―生产成本―技术改革费用);
(Ⅱ)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?
(本小题满分14分)已知抛物线的焦 点为F,A是抛物线上横坐标为4、
位于轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于
轴,垂足为B,OB的中点为M.
(1)求抛物线方程.
(2)以M为圆心,MB为半径作圆M,当是
轴上一动点时,讨论直线AK与圆M的位置关系.
(本小题满分14分)已知等差数列的各项均为正数,
,前n项和为Sn,数列
是等比数列,
(1)求数列的通项公式.
(2)求证:对一切
都成立.
(本小题满分14分)如图,平行四边形中,
,
,且
,
正方形和平面
成直二面角,
是
的中点.
(1)求证:.
(2)求证:平面
.
(3)求三棱锥的体积.
(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
附:(临界值表供参考)
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)已知函数(
R).
(1)求的最小正周期和最大值.(2)若
为锐角,且
,求
的值.